中国科大主页
首页
概况
“全院办校、所系结合”简介
“全院办校、所系结合”工作委员会
工作人员
合作单位
科教融合学院
所系结合研究生培养基地
合作院所
科技英才班
共建科教结合平台
共建实验室
新闻通知
新闻动态
通知公告
制度文档
中科院文件
校内文件
文档下载
所系学生工作中心
工作简介
活动新闻
学生风采
科研进展
科研进展
首页
科研进展
2023
07.21
中科院金属所具有大击穿电场和储能密度的二维反铁电杂化钙钛矿
铁电或反铁电体是典型非线性介电材料,拥有自发极化特性,并能对电场、应力等外部环境作出灵敏的响应,可应用于非易失性存储器、应变传感器和储能器件领域。无机铁电/反铁电材料具有极化强度大、有序温度高和相结构丰富等优点,而有机铁电/反铁电材料具有合成温度低和规模制备等优势。有机-无机杂化材料则可能在单相内兼具有机和无机组分不同特性的潜力,以实现更佳的综合器件性能。当前,铅基杂化钙钛矿因具有优异的光学性能,已经在太阳能电池和光电探测等能量转化和探测领域得到广泛关注,但是杂化钙钛矿在能量存储领域的应用则鲜有研究。已知的杂化钙钛矿介电储能材料主要集中在反铁电材料上,存在击穿电场低(100 kV/cm)、储能密度小(0.26 J/cm3)、奈尔温度低(355 K)等缺点,迫切需要开发兼具大的极化强度和击穿电场的杂化钙钛矿材料以提升储能性能。围绕这一目标,中国科学院金属研究所沈阳材料科学国家研究中心功能材料与器件研究部李伶俐博士生、胡卫进研究员、张志东研究员等与国内外多家单位合作,制备了高质量的二维杂化钙钛矿苯甲胺铅溴[(PMA)2PbBr4]单晶,精确测定了其晶体结构,并系统研究了铁电、介电和电输运性
2023
07.21
中科院合肥研究院科学岛团队在聚变中子源生产医用同位素研究取得进展
近日,中国科学院合肥物质院核能安全所韩运成副研究员团队与湖北科技大学熊厚华等合作,在聚变中子源生产医用同位素研究取得新进展,相关研究成果发表在核领域期刊《核科学与技术》(Nuclear Science and Techniques)上。利用医用同位素进行诊断治疗,是提高人民健康水平不可或缺的重要手段。锝-99m(99mTc)是目前临床诊断应用最为广泛的医用放射性同位素。我国的医用同位素99mTc需求全部依赖进口,主要通过在实验堆中辐照高浓缩铀-235(235U)生成的钼-99(99Mo)衰变得到,存在工艺复杂、成本高、长距离运输损失等弊端以及核扩散风险。此外全球实验反应堆数量少且面临老化、维修、退役及意外事件等问题,使得钼-99/锝-99m(99Mo/99mTc)供应面临困难。针对上述问题,研究团队提出了一种基于气动磁镜聚变中子源驱动低浓缩铀(LEU)的次临界包层系统生产99Mo方案。该方案具有生产效率高、核废物少、成本低、可同时生产多种医用同位素等优点。方案利用氘氘反应代替常规的氘氚反应提供高通量中子,氘相对氚易于获取和操作,成本相对更低。产99Mo包层大小为100°扇面(5π/18
2023
07.21
中科院合肥研究院科学岛团队在超高温陶瓷粉体研制方面取得新进展
近期,中科院合肥物质院固体所李越研究员团队与哈尔滨工业大学张幸红教授团队合作,在超细、高纯超高温陶瓷粉体制备与机理研究方面取得新进展,发展了一种液相陶瓷前驱体-碳/硼热还原新工艺,该工艺可实现批量化制备多种高纯、超细硼化物陶瓷粉体。相关成果相继发表于材料领域国际期刊Journal of Materials Science Technology和ACS Applied Engineering Materials等。硼化物超高温陶瓷及其复合材料由于其优异的综合理化特性,已成为空间飞行器在极端热环境服役中重要的候选材料。其中,ZrB2、HfB2因其极高的熔点(超过3000°C)、高抗氧化性和优异的耐腐蚀性而受到广泛关注。研制高性能硼化物陶瓷材料的关键是获得高性能的陶瓷粉体。一般来说,超细粒径、高纯度和低氧含量的陶瓷粉体不仅有利于低温烧结过程中块材的致密化,还可以避免对陶瓷基复合材料基体的损伤,从而提升陶瓷基复合材料的抗氧化性和机械性能。传统的机械化合金、高温自蔓延等方法难以获得同时具有高纯度和超细粒径的硼化物陶瓷粉体。因此,亟需研发出新工艺实现高纯和超细粒径硼化物陶瓷粉体的工程化制备,为硼
2023
07.21
中科院合肥研究院科学岛团队在X射线直接探测及成像研究方面取得新进展
近期,中科院合肥物质院固体所潘旭研究员团队与中国工程物理研究院郑霄家研究员等合作在钙钛矿材料的新应用——X射线直接探测及成像领域中取得新进展,相关研究成果发表在ACS Nano上。卤化物钙钛矿材料具有优异的光电性能,在X射线直接探测方面具有很大的应用潜力,与目前商用探测器材料相比,其灵敏度和检测下限提升了多个数量级,有望大幅降低射线成像中辐射剂量率。钙钛矿晶圆相较于薄膜、单晶器件具有高度可扩展性并易于制备,使其成为X射线检测和阵列成像应用中最有前景的候选者。然而,多晶晶圆的制备过程中不可避免的会产生大量的晶界和孔隙,从而导致严重的离子迁移并进一步引起器件不稳定和电流漂移,严重限制了探测器的成像分辨率和未来的商业化应用。(1D) δ该研究为钙钛矿应用于X射线成像提供了一种新的设计思路和材料选择体系,并有望实现未来商业化应用。该研究第一作者为固体所博士研究生汪子涵,通讯作者为潘旭研究员、叶加久博士后。该工作得到了国家重点研发计划、国家自然科学基金、安徽省杰出青年基金等项目的支持。论文链接:https://pubs.acs.org/doi/10.1021/acsnano.3c02476图.
2023
07.21
中科院合肥研究院科学岛药学团队发现曲西立滨在FLT3-ITD阳性急性白血病中的新应用
近日,中科院合肥物质院健康所刘青松药学团队基于药物重定位策略,发现了AKT抑制剂曲西立滨具有靶向STAT5进而抑制FLT3-ITD阳性急性髓系白血病(FLT3-ITD+AML)并克服耐药的作用。该研究成果在线发表于国际期刊MedComm。FLT3-ITD+AML在急性髓系白血病中约占25%,其主要发病机制是由于FLT3激酶基因发生了ITD突变进而导致白血病细胞的异常增殖。虽然目前针对FLT3激酶已开发出多款靶向药物,然而这些药物的长期使用会产生复发耐药等问题,因此开发新型的治疗策略具有重要的意义。在该研究中,科研人员采用老药新用的研究策略,通过高通量筛选的方法,发现AKT激酶抑制剂曲西立滨具有选择性抑制FLT3-ITD+AML细胞增殖的作用,而其它AKT激酶抑制剂却没有类似的效果。有研究报道,核转录因子STAT5是FLT3-ITD介导的信号通路的关键下游蛋白,其过度活化是临床上常见的引起FLT3-ITD突变细胞耐药的主要原因,对FLT3-ITD+AML的发生发展起着重要的调节作用。科研人员通过分子生物学、生物化学以及组学研究手段发现,曲西立滨通过结合STAT5影响了STAT5的二聚并阻
2023
07.21
中科院合肥研究院科学岛团队在地表水质的光谱监测技术方面取得新进展
近日,中科院合肥物质院智能所光谱智能感知团队提出了一种基于紫外可见光谱(UV-Vis)和近红外(NIR)光谱数据融合策略,用于地表水质的快速高精度检测。相关研究成果已在分析化学领域期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上发表。水质参数的实时监测对地表水污染的防治具有重要意义。化学需氧量(COD)、氨氮(AN)和总氮(TN)是反映地表水污染程度的关键指标。紫外-可见(UV-Vis)光谱和近红外(NIR)光谱作为两种快速、简便、多组分的分析技术,在水质监测中具有传统化学检测方法无法比拟的优势。为了进一步提高光谱方法检测水质的精确性,科研团队开发出一种基于UV-Vis和NIR光谱数据融合(UV-Vis-NIR)的地表水质检测策略。研究人员首先对70份不同污染程度的河流样本进行光谱采集和化学测定,通过UV-Vis与NIR光谱的初级融合获得UV-Vis-NIR融合数据,采用不同的变量选择算法优化地表水污染指标的UV-Vis-NIR融合模型。研究结果表明,基于UV-Vis-NIR数据融合策略的地表水
2023
07.21
中科院合肥研究院科学岛团队在高结晶石墨烯宏观体研究方面取得新进展
近期,中科院合肥物质院固体所王振洋研究员团队在高结晶石墨烯宏观体的共价生长及其电学行为调制方面取得系列进展,相关研究成果发表在Advanced Functional Materials和Chemical Engineering Journal上。石墨烯是一种具有优异力学、电学、热学和光学性能的二维碳材料。石墨烯的高效制备及宏观组装对其规模应用具有重要意义。目前,石墨烯宏观体的常规制备方法如液相自组装、3D打印和催化模板法等仅能实现石墨烯片层间的非共价弱相互作用连接,导致石墨烯晶体结构的不连续,成为限制石墨烯宏观体电学性质的主要因素。鉴于此,研究人员开发了一种激光辅助的layer-by-layer共价生长方法来制备高结晶石墨烯宏观体,分子动力学模拟从理论上揭示了其共价生长机制。共价生长法使得材料具有连续的晶体结构,与非共价组装相比,其跨层电导率实现了100倍的提高。该材料有助于解决石墨烯规模化应用面临的层状堆垛、晶体质量调控、离子输运通道、体积效应等问题,为石墨烯的储能电极应用奠定了基础。相关研究成果发表在Advanced Functional Materials (Adv. Funct
2023
07.07
中科院苏州医工所李辉团队在SIM超分辨显微成像研究中取得系列进展
结构光照明显微镜(SIM)以成像速度快、无需特殊荧光标记和光毒性小等优势,被视为当前最适合活细胞成像的超分辨(SR)技术。经过二十多年的快速发展,SIM在成像理论和应用研究方面都取得了长足进步,但依然有许多普遍存在的棘手问题亟待解决和完善。中国科学院苏州生物医学工程技术研究所李辉团队着眼于解决SIM在实际生物成像应用中的短板,致力于打造“useracknowledgeable”的SIM成像技术和仪器装备,最近在避免结构光参数估计、深度学习图像重构、升级宽场显微镜系统的模块化SIM解决方案等方面取得系列重要进展。长期以来,大多数SIM算法直接或间接遵循标准的Wiener-SIM架构或依赖于其重建结果。Wiener-SIM重建涉及耗时的照明条纹参数估计和伪影敏感的频域去卷积。此前,李辉团队发展了基于“频谱优化”理念的高保真SIM重建技术HiFi-SIM并发表于Light: Science Applications, 10, 70, (2021),有效克服了SIM图像中的典型伪影,但HiFi-SIM仍依赖于结构光条纹参数的精确估计。然而,条纹参数很小的偏差就会导致Wiener-based
2023
07.07
中科院苏州纳米所康黎星等在大载流、高导电碳纳米管复合薄膜研究方面取得新进展
导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而严重制约SWCNT薄膜在大功率器件领域的应用。针对上述问题,中科院苏州纳米所康黎星研究员等人提出并研制了一种新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。通过电学测量发现CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。 图1. (
2023
07.07
中科院苏州纳米所在仿生人工肌肉研究方面取得新进展
仿生肌肉纤维在外界刺激下能够产生类生物肌肉的收缩运动,作为一种新型的驱动器,有望推动仿生软体机器人、智能变翼飞行器、可穿戴及可植入医疗技术等方向的创新发展。螺旋仿生肌肉纤维凭借其独特的驱动放大结构可以输出优异的驱动性能。但在收缩前需要对螺旋仿生肌肉纤维施加张力将纤维相邻的螺环分开为其收缩提供空间,而且其回复过程也需要相同的应力将纤维拉回原长,这导致在一个驱动循环过程中螺旋仿生肌肉纤维的净做功为零。针对上述问题,中科院苏州纳米所李清文、邸江涛研究员等报道了一种无预应力、可自回复并能高效循环做功的仿生肌肉纤维。该仿生肌肉纤维以碳纳米管(CNT)纤维的弹性螺旋结构驱动回复,并利用液晶弹性体(LCE)的可逆相变产生驱动形变。所获得的肌肉纤维表现出56.9%的可逆收缩量,1522%/s的收缩速率,7.03 kW kg-1的功率密度和32,000次的稳定循环。 图1. LCE/CNT复合纤维的制备与表征 通过连续的浸渍涂覆固化技术实现了复合纤维的连续制备,随后进行并股加捻得到螺旋纤维。其中,CNT纤维表面的沟道初步诱导了液晶分子的排列,加捻进一步诱导液晶分子重排变为相对有序的状态,复合纤维在温
每页
10
记录
总共
650
记录
第一页
<<上一页
下一页>>
尾页
页码
26
/
65
跳转到
地址:安徽省合肥市金寨路96号
邮政编码:230026
[网站维护]中国科学技术大学研究生院[技术支持]中国科大网络信息中心