中国科大主页
首页
概况
“全院办校、所系结合”简介
“全院办校、所系结合”工作委员会
工作人员
合作单位
科教融合学院
所系结合研究生培养基地
合作院所
科技英才班
共建科教结合平台
共建实验室
新闻通知
新闻动态
通知公告
制度文档
中科院文件
校内文件
文档下载
所系学生工作中心
工作简介
活动新闻
学生风采
科研进展
科研进展
首页
科研进展
2023
08.14
中科院金属所超高强度钢溶质偏析行为研究取得新进展
近期,中国科学院金属研究所特种合金研究部先进特殊钢团队牛梦超博士、王威研究员、杨柯研究员联合香港理工大学焦增宝教授,针对Fe-Ni-Ti基马氏体时效钢时效后出现的晶间脆性问题,通过研究溶质原子相互作用对晶界偏析、析出和断裂的影响,发现高强度马氏体时效钢晶界处形成粗大的Ni3Ti析出相和相应的无析出区(PFZs)是造成晶间脆化的主要原因,这些区域有利于裂纹在晶界处形核和扩展,同时研究发现,通过合理的Mo合金化,能够有效抑制晶间脆化,从而大大提高钢材的韧性。从原子尺度分析显示,Mo可以减少Ni和Ti在晶界的偏析,有效地抑制粗大的Ni3Ti析出物和PFZs在晶界处的形成,同时,Mo偏析增强了晶界的凝聚力,这也可能在抑制沿晶断裂方面起到了次要作用。相关研究结果以“Atomic-scale understanding of solute interaction effects on grain boundary segregation, precipitation, and fracture of ultrahigh-strength maraging steels”发表于Acta Materi
2023
08.14
中科院合肥研究院科学岛团队在纳米材料对作物营养元素叶面递送方面取得系列研究进展
近期,中国科学院合肥物质院固体所汪国忠研究员团队利用硅基纳米材料的表面粗糙工程,在作物叶面实现了对大量元素氮、中量元素镁和微量元素铁的高效递送,为各类营养元素的有效利用提供了一条普适路径。相关成果相继发表在ACS Nano和Environmental Science: Nano上,并获授权国家发明专利三项。肥料是作物的“粮食”,也是保障粮食安全的重要物质基础。相较于传统土壤施肥,叶面施肥可使营养元素喷施于作物叶表,各种营养物质可直接从叶片进入作物体内,参与作物的新陈代谢和有机物的合成过程。然而由于作物叶面存在“荷叶效应”,现有叶面肥溶液在喷施过程中会从作物叶面大量滑落,或通过雨水冲刷进入土壤、河流等环境介质(肥料损失率约80%),导致严重环境污染,且浪费大量资源。因此开发可以在植物疏水叶面上高效附着的肥料通用技术是现代农业面临的难题。鉴于此,研究人员以大量元素氮为研究对象,利用纳米二氧化硅球表面粗糙工程制备了形貌不同的三种新型叶面氮肥:实心、空心以及海胆状空心硅基叶面氮肥,并成功在叶面环境中实现了对大量元素氮的有效递送。与传统叶面氮肥相比,具有纳米结构的叶面氮肥在花生叶片和玉米叶片的粘
2023
08.14
中科院合肥研究院科学岛团队在智能语言认知功能评估方面取得系列进展
近期,中国科学院合肥物质院健康所李海研究员团队在Behavior Research Method、Advanced Intelligent Systems、Dementia and Geriatric Cognitive Disorders和Computer Speech Language等专业国际期刊上连续发表4篇文章,汇总展示了团队在智能语言认知功能评估领域的工作进展。 语言是人类独有的一种高级认知能力,涉及复杂的抽象思维和精细的运动控制。神经系统疾病、衰老、脑损伤等会影响语言加工有关的神经环路,对语言的产生和理解造成不利影响。言语活动中的声学和语言学特征是脑功能疾病和衰老的敏感标志物,同时,语言任务具有生态效度高,采集方便,能够自动化分析的优点。因此,发展基于言语声学分析的智能认知评估方法是当前智能健康研究领域的又一热点,有助于开展大规模神经退行性疾病的快速社区筛查和干预,特别对应对人口老龄化带来的认知衰退问题有重要科研和社会价值。在此背景下,研究团队经过系统攻关,发展了一套标准化的语言认知测试套件和智能评估系统,并在健康人和不同类型神经性疾病群体上进行了系统测试和验证。具体
2023
07.28
中科院合肥研究院科学岛团队在时间分辨频率调制磁旋光谱探测技术方面取得新进展
近日,中国科学院合肥物质院安光所张为俊研究员团队在时间分辨频率调制磁旋转光谱探测技术方面取得新进展,相关研究成果以《用于OH自由基时间分辨测量的高带宽中红外频率调制磁旋转光谱仪》为题发表于美国光学学会(OSA)出版的Optics Express上。羟基(OH)自由基是大气中最重要的氧化剂,启动了对流层大气中绝大部分的氧化反应。OH自由基浓度低、寿命短,实现高灵敏快速检测对于深入研究其化学反应动力学和机理、厘清大气污染成因,具有极为重要的科学和应用意义。团队赵卫雄研究员和程飞虎博士等人发展的用于OH自由基高灵敏快速测量的频率调制磁旋转光谱技术具有高时间分辨、高灵敏度、选择性好的特点,特别适合短寿命自由基和中间体的动力学研究。实验中,针对266nm脉冲激光产生OH自由基,研究人员使用该技术测量了2.8微米附近的时间分辨光谱信号,经过3次脉冲平均,OH的检测线达到6.8×108分子/立方厘米 (1σ, 0.2 ms),100次平均后,检测线可进一步下降到8.0×107分子/立方厘米。该技术不仅适用于OH自由基,也适用于其它顺磁性瞬态分子,将为自由基动力学研究提供一种新的重要测量手段。本研究得
2023
07.28
中科院合肥研究院科学岛团队在高酸环境中选择性分离锶方面取得新进展
近日,中国科学院合肥物质院核能安全所黄群英研究员项目组与南华大学先进核燃料循环化工研究中心宁顺艳教授团队合作,研究制备了一种新型无机-有机杂化硅基吸附剂用于高酸环境中选择性分离锶,相关研究成果发表在化工领域期刊《环境化学工程杂志》(Journal of Environmental Chemical Engineering)上。核能的快速发展可有效缓解能源危机问题,但其所产生的长寿命放射性废物的处理与处置仍然存在一系列困难与挑战。在这些放射性核素中,放射性锶(90Sr,T1/2= 28.8 a,Eβ= 0.54 MeV)因其高化学和生物毒性而被认为是危害较高的放射性核素之一。在高放废液的玻璃固化过程中,因90Sr衰变过程中持续释放热量将使玻璃基体不稳定并导致放射性核素浸出,因此在玻璃固化前须将90Sr从高放废液中进行有效分离,以有利于放射性废物的进一步深地质处置。另外,其衰变产物90钇(90Y)可作为一种高效放射性药物在医疗领域发挥重要作用。因此,将90Sr从高放废液中选择性分离,既有利于放射性废物的处理与处置,又可实现二次资源化利用。利用原位聚合法在多孔二氧化硅球内部构建苯乙烯-二乙烯
2023
07.28
中科院广州能源所在秸秆能源化绿色循环技术体系落地推广取得关键进展
我国农作物秸秆年产生量为8.6亿吨左右,综合利用量为6.5亿吨左右,其中直接还田占61.8%。由于秸秆自然腐解速度缓慢,长期直接还田会导致土壤结构松弛,产生过大的间隙,造成弱苗死苗,同时秸秆携带的病原菌和虫卵有可能传播到新生作物,导致减产甚至绝收。目前,秸秆离田高值化利用已纳入国家发展规划。《“十四五”循环经济发展规划发改环资[2021]969号》提出,鼓励秸秆离田产业化利用,开发新材料新产品,提高秸秆饲料、燃料、原料等附加值。构建糖平台是木质纤维素生物炼制的关键所在,其中预处理过程能耗高、废液产生量大、拆解效果欠佳,是限制产业规模化发展的技术瓶颈之一。中国科学院广州能源研究所生物质生化转化研究室长期从事农作物秸秆等木质纤维素原料生化转化制备生物燃料或化学品的理论研究与技术开发。研究室针对低能耗的碱预处理技术,克服其废液产量大且难以处置的技术瓶颈,开发出了低水耗和低废液产生量的工艺技术体系,与传统碱预处理工艺相比,节约水耗80%以上,废液产生量低于15%。为降低甚至消除剩余废液的处置成本,针对不同农作物的生长需求,通过长期的作物盆栽、水培等实验,开发了液态有机肥调配及施用技术,并与韶关
2023
07.21
中科院苏州医工所戴亚康团队在多模态影像配准研究中取得进展
多模态医学影像分析是肿瘤诊断、放疗规划和影像引导的介入治疗等诊疗过程的关键技术,其中多模态影像配准是其重要环节,实现更加精准快速的多模态影像配准具有重要的临床意义。多模态影像配准难点在于不同模态影像的灰度、纹理差异较大,组织结构的特征表征学习较为困难;部分脏器(如肝脏)受呼吸运动影响,组织存在非线性大形变。经典的基于迭代优化计算的多模态影像配准方法主要利用最大化相似性测度来寻找影像的最优空间变换参数,但存在迭代优化计算量大、配准时间长、易陷入局部极值的缺点。基于弱监督深度学习的多模态影像配准方法需要标签数据驱动,存在标签数据获取耗时耗力,标签噪声易影响配准结果的缺点。以上因素制约了多模态影像配准精度进一步提升。为此,苏州医工所戴亚康研究员团队联合温州医科大学附属第五医院和苏州大学附属第二医院提出了多尺度空间权重联合双相似性测度的无监督学习多模态影像配准方法并应用于肝脏CT-MRI影像配准。该方法通过结合深度学习网络的多尺度形变框架,实现从粗到细的逐步配准,提升大形变配准精度;然后使用双通道输入的空间权重模块,提升网络对多模态影像中大形变区域的特征表达能力;再使用双重损失函数,在约束整体
2023
07.21
中科院苏州纳米所张其冲等在柔性高比能水系锌离子电池方面取得系列进展
随着可穿戴和便携式电子产品的兴起,促使电池向着高能量密度、长寿命和柔性方向发展。水系锌离子电池凭借安全性高、环境友好和水体系电导率高等优点,被认为是下一代储能电池的理想候选者。其中,柔性自支撑电极是实现可穿戴储能器件的核心部分,它能够避免粘结剂的使用,提高活性材料与电解液的接触面积和电极整体的导电性。在众多正极材料中,钒基材料,尤其是钒氧化物,具有可调节的层间距,可容纳大量的锌离子进行能量存储而被广泛应用于水系锌离子电池。然而,钒氧化物有限的层间距限制了锌离子嵌入/脱出、并在此过程中对其结构造成破坏以及在水体系中的部分溶解等因素阻碍了层状钒基材料的发展。 研究者利用钠离子与聚苯胺共嵌入策略,制备了扩大层间距的钒酸铵阴极材料(NaNVO-PANI),实现了高离子传导和储存的柔性锌离子电池。钠离子与带负电的VOx层板间的静电作用稳定了层结构;聚苯胺将材料的层间距扩大到了13.8 ?,这为锌离子的嵌入/脱出提供了便利的通道。同时聚苯胺分子增加了活性材料的疏水性,从而抑制了NaNVO-PANI在水系电解液中的溶解。NaNVO-PANI作为柔性水系锌离子电池正极材料时,器件在0.5 A g?1电
2023
07.21
中科院苏州纳米所在气凝胶激光防护材料领域取得进展
气凝胶是一种具有连续三维多孔网络结构的超轻固体材料,其独特的结构赋予其优异的热学、光学及力学等理化性质,能够对外来能量进行有效管理,在超级隔热、高效电磁屏蔽及力学防护等领域受到广泛关注。然而,气凝胶在极端环境下的多能量场耦合冲击(如高能激光)防护方面鲜有报道,且相关气凝胶材料的结构设计理念及合成机制尚不明确。 鉴于此,中国科学院苏州纳米技术与纳米仿生研究所张学同研究员团队通过构筑纳米带状的氮化硼基元,发展得到一种具有轻质、高反射特征的超白氮化硼气凝胶材料:氮化硼基元的二维平面形态具有强的光学背散射效应,可作为光学纳米屏障(图1a);大的长宽比利于纳米基元相互交织形成气凝胶三维网络(图1b)。氮化硼气凝胶的高反射特征可实现对高能激光的有效反射,最大程度减少激光在材料表面热量的沉积。此外,结合氮化硼气凝胶自身低导热、耐高温及力学柔性等特征,可有效降低激光沉积热量的纵向传递,并承受激光衍生的局域高温场所带来的高温损伤及热应力冲击。多种因素协同(图1c),保证超白氮化硼气凝胶在高能激光辐照时维持结构完好(图1d),并兼具低密度(~0.017 g/cm3)及高激光防护阈值(~2.1×104
2023
07.21
中科院苏州纳米所张珽团队AM:一种用于可穿戴电子的柔性强韧水伏离子传感器
由于构成水伏器件的功能化纳米材料间缺乏有效的绑定机制,严重制约了蒸发驱动的水伏效应在可穿戴传感电子领域的应用。在不牺牲纳米通道结构和表面功能特性的前提下,显著提高水伏器件的机械强度和柔性以满足可穿戴需求是实现水伏效应在可穿戴电子领域广泛应用所面临的重大挑战之一。另一方面,基于具有交叠双电层纳米通道的水伏器件在产电之外还具有离子传感的潜力,然而目前研究大多都聚焦于水伏产电性能的提升,水伏离子传感却被忽视。 图1. 用于可穿戴电子的柔性强韧PAN/Al2O3水伏器件的材料、结构及水循环示意图 近期,中科院苏州纳米所张珽研究员团队报道了一种用于柔性可穿戴电子的强韧水伏离子传感器。利用高分子聚丙烯腈(PAN)对氧化铝(Al2O3)纳米颗粒进行强力的串联和绑定(图1,图2A-C),使其形成的多孔薄膜具有出色的柔性和机械抗冲击特性,可以经受超过180°的弯曲和9.92 m s-1的高速水流冲击(图2D-F)。更为重要的是,PAN结构稳定机制的引入也未对Al2O3形成的纳米通道结构和表面Zeta电位造成限制。基于该柔性强韧PAN/Al2O3薄膜的水伏离子传感器件展现了高达3.18 V的最大开路电压
每页
10
记录
总共
650
记录
第一页
<<上一页
下一页>>
尾页
页码
25
/
65
跳转到
地址:安徽省合肥市金寨路96号
邮政编码:230026
[网站维护]中国科学技术大学研究生院[技术支持]中国科大网络信息中心