近日,中科院苏州纳米所张珽团队在期刊Nano-Micro Letters上发表了最新研究成果“生物组织启发的超软、超薄、力学增强的电纺纤维复合凝胶用于柔性生物电子”(Biological tissue?inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics)。中科院苏州纳米所为第一署名单位,高强博士后为论文第一作者,通讯作者为张珽研究员。该研究开发了一种新策略,通过将电纺纤维网络嵌入水凝胶中从而实现同时具有超薄结构和优异力学性能的复合水凝胶薄膜(< 5 μm)的构建。纤维复合水凝胶提供了广泛的可调模量(从 ~ 5 kPa 到几十 MPa),这与大多数生物组织和器官的模量相匹配。超薄的结构和超柔软特性使电纺纤维复合水凝胶能够无缝附着在各种粗糙表面上,是构建贴附型生物电子器件的理想材料。
纤维复合水凝胶薄膜基于静电纺丝、旋涂和冻融联合技术构建(图1)。通过调控静电纺丝时间、旋涂时间和冻融次数,实现对纤维复合水凝胶薄膜理化性质的调控(厚度:5微米到毫米;模量:几千帕到几十兆帕)。例如,增加纺丝时间可显著提高纤维复合水凝胶薄膜的力学性能;提高旋涂速率,有利于降低纤维复合水凝胶薄膜的厚度;增加冻融次数,可提高水凝胶自身的模量。纤维复合水凝胶具有优异的力学强度,一片厚度仅为7微米水凝胶薄膜可轻松托起20g重量的物体。此外,包埋的纤维网络可有效抑制应力集中导致的裂纹扩增,赋予纤维复合水凝胶薄膜优异的抗撕裂性能(图2)。
图1. 纤维复合水凝胶设计和制备
图2. 纤维复合水凝胶薄膜力学性能
常规的水凝胶材料具有容易失水的缺点,长期暴露于空气中时,由于体系水分的蒸发从而使水凝胶体系失效。该研究通过在纤维复合水凝胶体系中掺入甘油作为保水剂,使复合水凝胶体系具有优异的抗失水性能。暴露于空气中七天后,仍具备优异的柔性。此外,为了改善纤维复合水凝胶的导电性,甘油/NaCl体系使纤维复合水凝胶在空气中维持长期的高导电性能(图3)。
图3. 纤维复合水凝胶薄膜抗失水性能
得益于其超软和超薄的特性,纤维复合水凝胶薄膜可实现对各种不同粗糙表面的无缝贴附。其广泛可调的力学性能,几乎可实现对所有生物软组织(例如脑,肝脏,心脏,肺,心脏和皮肤等)模量的完美匹配,可伴随组织产生形变而不损伤组织,是构建柔性生物电子器件的理想材料(图4)。
图4. 纤维复合水凝胶薄膜的柔性和贴附性能
基于甘油/NaCl体系的纤维复合水凝胶构建的贴附型生物电极具有比商业凝胶电极更加优异的信噪比和长期使用性能。商用凝胶电极长期(48h)暴露于空气中会由于失水从而丧失性能,甘油/NaCl体系的纤维复合水凝胶电极在7天后仍旧保持良好信噪比,实现对人体肌电信号的采集。甘油/NaCl体系的纤维复合水凝胶电极用于检测人体肌电信号,可实现对不同运动姿势和不同运动强度肌肉电信号的监测(图5)。
图5. 纤维复合水凝胶电极用于人体肌电信号监测
研究者通过将电纺纤维网络包埋于水凝胶,开发了一种制备超软、超薄、力学增强复合水凝胶的新策略,实现对不同粗糙物体表面的紧密共形贴附。该工作为超薄柔性生物电子提供新颖的设计和构建思路。
文章链接